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ABSTRACT

Humans have invested several genes in DNA repair and fidelity replication. To account for the disparity
between the rarity of mutations in normal cells and the large number of mutations present in cancer, an
hypothesis is that cancer cells must exhibit a mutator phenotype (genomic instability) during tumor
progression, with the initiation of abnormal mutation rates caused by the loss of mismatch repair. In this
study we introduce a stochastic model of mutation in tumor cells with the aim of estimating the amount of
genomic instability due to the alteration of DNA repair genes. Our approach took into account the
difficulties generated by sampling within tumoral clones and the fact that these clones must be difficult to
isolate. We provide corrections to two classical statistics to obtain unbiased estimators of the raised
mutation rate, and we show that large statistical errors may be associated with such estimators. The power
of these new statistics to reject genomic instability is assessed and proved to increase with the intensity of
mutation rates. In addition, we show that genomic instability cannot be detected unless the raised mu-
tation rates exceed the normal rates by a factor of at least 1000.

DNA replication in normal human cells is an ex-
tremely accurate process. During the cell division

cycle, copy errors occur with probabilities ,10�9–10�10

per nucleotide. In contrast, the malignant cells that
constitute cancer tissues are markedly heterogeneous
and exhibit alterations in the nucleotide sequence of
DNA (e.g., Bielas and Loeb 2005). To account for the
disparity between the rarity of mutations in normal cells
and the large numbers of mutations present in cancer,
Loeb et al. (1974) hypothesized that during tumor pro-
gression, cancer cells must exhibit a mutator phenotype
(see the review by Loeb et al. 2003). It is still a matter of
debate to know exactly which event initiates tumori-
genesis. But one hypothesis for the initiation of ab-
normal mutation rates in tumors is the loss of mismatch
repair (MMR).

For instance, this phenomenon may follow from the
inactivation of the genes hMSH2 and hMLH1 involved
in hereditary nonpolyposis colorectal cancers (HNPCC)
(Fishel et al. 1993; Leach et al. 1993; Lindblom et al.
1993). In normal conditions, the MMR repair system
involves a complex interaction among the protein prod-
ucts of hMSH2 and hMLH1 genes. The result is to elim-
inate�99.9%of the errors inDNA replication, reducing
errors to a rate of �1/1012 bp in genes that regulate the
apoptosis or the cell cycle duration. HNPCC is inherited
in an autosomal dominant fashion. One copy of the

mutant allele is defective and is inherited in the germ-
line. The loss of MMR may start when the second muta-
tion occurs somatically as a consequence of the two-hits
theory (Moolgavkar and Knudson 1981).
Widespread genomic instability seems associated with

MMR-defective genes. For example, microsatellite in-
stability is associated with HNPCC (Ionov et al. 1993;
Peltomaki et al. 1993; Thibodeau et al. 1993). Detec-
tion of DNA instability is therefore a crucial step in view
of noninvasive diagnosis of such forms of cancer. Be-
cause numerous mutations are required for the full
development of cancer, inactivation of caretaker genes
can greatly accelerate its development (Kinzler and
Vogelstein 2002). For an account of the etiology and
genetic epidemiology of cancer with a statistical per-
spective a major review is by Thomas (2004).
This study introduces a two-rates model of DNA

mutation based on the infinitely many sites model
(Watterson 1975). We consider a sample of n sequen-
ces taken from a pretumoral tissue and assume that loss
of DNA repair has occurred once (and only once)
during the history of the n sequences tracking back to
their most recent common ancestor. We denote the
mutational event by the formal symbol D. The event D is
assumed to occur at a very low rate d.
The loss of MMR (occurrence of D) may lead to a

10- to 1000-fold increase in the normal mutation rate
m0 (Bhattacharyya et al. 1994; Shibata et al. 1994).
However, only the sequences that descend from D are
concerned with such an increase in the mutation rate.
Because heterogeneity prevails in cancer tissues and
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sampling from the tumor is difficult, we assume that an
unknown random number of sequences among the
sample descend from the mutation D.

The goal of this study is to provide statistical estima-
tors for the raised mutation rate m1 under the assump-
tion that the normal rate m0 is known, but the number
of descendants of D is unknown. Two classical statistics
are studied (see Hartl and Clark 1997 for a review in
a population genetics context). The first one is the
nucleotide polymorphism computed as the average number
of segregating sites in the DNA. The second one is the
nucleotide diversity computed as the number of pairwise
nucleotide differences. Our main contribution is the
calculation of corrections to the classical statistics that
are needed because the increase in the mutation rate
concerns only a random subgenealogy of the sample.

In our study, the clonal evolution of mitotic cell
divisions is assumed to be selectively neutral. More
precisely, the evolution of the tissue is approximated
by a continuous branching process where one cell dies
at random after each division (Moran 1962). At least in
the early stages of progression toward tumor cells, this
model may be consistent with instability theory. Nev-
ertheless the assumption of selective neutrality is still
a source of controversy. Opponents of Loeb’s theory
support the hypothesis that the number of pretumoral
cancer cells increases rapidly with time (see Tomlinson
et al. 1996, 2002; Tomlinson and Bodmer 1999; Sieber
et al. 2003). An alternative to the approach developed
here would therefore include the rapid growth of tumor
clones and the selective advantage of pretumoral cells.
It is clear that such assumptions complicate the model
and its analysis significantly. Although we believe that
the recent contributions by Krone and Neuhauser

(1997), Stephens and Donnelly (2003), and Coop and
Griffiths (2004) may allow some progresses in this re-
spect, the selectionperspectivewill not bepresentedhere.

Under the neutral assumption, we model the geneal-
ogies of DNA sequences using conditional coalescent
trees (Wiuf andDonnelly 1999; Griffiths and Tavaré
2003; Tavaré 2004). This formalism has been devel-
oped for the primary purpose of estimating the age of
an allele (Griffiths and Tavaré 1998; Stephens
2000). So far, evolutionary models have been introduced
for dating the loss of MMR (Tsao et al. 2000; Calabrese
et al. 2004). Tsao et al. (2000) observed microsatellite
alleles in noncoding regions, assuming neutrality as well.
However, the need for further mathematical studies has
been emphasized in a recent review to better understand
the influence of existing hypotheses in the evolution of
cancer (Michor et al. 2004).

In the next section, we define our notation and give
an account of the existing results in the theory of con-
ditional trees. In addition, we extendmany results of the
theory to encompass other times or ages useful in the
context of genomic instability and describe an efficient
way for simulating conditional trees. In nucleotide

polymorphism and nucleotide diversity, we intro-
duce unbiased estimators of the raised mutation rate
m1 based on the number of segregating sites and the
number of pairwise differences within the sample. The
statistical errors and the power of tests based on these
estimators are then compared using Monte Carlo
methods.

CONDITIONAL COALESCENT TREES

Model and notations: We consider a sample of n
copies of a gene at a particular DNA locus taken from a
pretumoral tissue and assume that the loss of MMR
(eventD) occurred once in the sample history. However,
the date and place at which this event occurred in the
sample genealogy areunknown.Mathematically, we con-
sider taking the limit as the rate of occurrence d tends
to zero conditional on D having occurred. In further
statements the symbol ¼ therefore often replaces the
limit symbol as d goes to zero.

The sample is divided into two random complemen-
tary subsamples B and C. The cardinality of B is a ran-
dom variable denoted by B. Given the number B ¼ b of
sequences inB, the number of sequences in C is then c¼
n� b. As usual, in studies of conditional coalescent trees,
the analysis requires two levels of conditioning. At the
first level, the sample has the property that all sequences
in B are descendants of the particular mutation D while
none of those in C are. This property is called the
topological event and is denoted by E. At the second level,
we assume that the mutation D arose only once in the
history of the sample. We denote this event by M. Con-
ditioning on E impacts the random topology of the tree,
while conditioning on M affects branch lengths. In the
terminology of Tavaré (2004), conditioning on E \ M
amounts to considering a unique event polymorphism
in the tree. The probability distribution of B is called the
frequency spectrum and it can be described as

PðB ¼ b jE \ M Þ ¼ 1

bHn�1
; b ¼ 1; . . . ; n � 1;

where Hn�1 ¼
Pn�1

i¼1 1=i denotes the (n � 1)th har-
monic number (see Griffiths and Tavaré 1998, 2003;
Stephens 2000).

Under the neutral hypothesis, we assume that line-
ages coalesce at random, and time is rescaled so that the
unit of time corresponds to N generations with N the
total cell population size (Kingman 1982). In this set-
ting, the normal mutation rate is usually rescaled so that
u0/2¼ 2Nm0 and the raisedmutation rate is u1/2¼ 2Nm1.
Conditioning on B ¼ b leads to a model of genealogies
that we refer to as the conditional coalescent tree (Wiuf and
Donnelly 1999; see Figure 1). All subsequent results are
established conditional on the event E \ M, but with the
exception of the appendix we omit this condition to
alleviate notations in long formulas.
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Background results: To state results about conditional
coalescence times, some additional results areneeded. As
much as possible, we use notations similar to those of
Wiuf andDonnelly (1999) and Tavaré (2004). For r ¼
1; . . . ; b � 1, we define Jr to be the total number of an-
cestors at the time the subsample B first has r ancestors.
This definition implies that Jr ranges between (r1 1) and
(n � b 1 r). In addition, we denote by J0 the number of
ancestors in the sample at the time the B lineages first
coalesce with the rest of the sample. This means that we
have

1# J0 , J1 , � � � , Jb�1 , Jb [n:

Similarly, we consider Kr to be the total number of an-
cestors at the time the subsample C first has r ancestors.
We have

K1 ,K2 , � � � ,Kc�1 ,Kc [n;

where the subset B is replaced by C in the previous
definition, and the Kr’s are complementary to the Jr’s in
the set of labels [1, n]. Note that conditional on J0¼ j, we
have Kr ¼ r for all r , j and j 1 1 # Kj. To finish, we
denote by JD the total number of ancestors in the sample
at the time the mutation D occurs. This implies that JD
takes its values between 2 and n � b 1 1. A picture of a
tree with a summary of notation is displayed in Figure 2.

The conditional joint distributions of the Jr’s given the
events E or E \ M are described in Tavaré (2004, Chap.
8, pp. 106–109), which we refer to when necessary. For
example, we easily deduce that

Pð Jr ¼ jr ; r ¼ 1; . . . ; b � 1 j J0 ¼ j ; E \ M Þ

¼
n � j � 1

b � 1

� ��1

ð1Þ

for all j , j1 , � � � , jb�1 ,n (see Wiuf and Donnelly
1999). This result is useful in the nucleotide di-

versity section. Similar properties are stated without
proofs when they are direct consequences of Tavaré’s
notations.
Another useful result concerns the number of ances-

tors in the sample at the time when the mutation D

occurs. Recall that we have

pD
k [Pð JD ¼ k jE \ M Þ ¼

n � k
b � 1

� �
n � 1

b

� � ð2Þ

for all k ¼ 2; . . . ; n � b 1 1.
The age of the mutation D has been studied by

Griffiths and Tavaré (1998), Wiuf and Donnelly
(1999), and Stephens (2000). Conditional on B¼ b, the
expected age is given by

tD ¼ 2
Xn�b11

k¼2

n � k 1 1

nðk � 1Þ pD
k : ð3Þ

Griffiths (2003) gave a nicer formula:

tD ¼ 2b

n � b

Xn

j¼b11

1

j
:

The distribution of intercoalescence times: In the stan-
dard coalescent, the durations X‘ that separate coales-
cence events backward in time are independent random
variables and have exponential distribution of rate l‘ ¼
‘(‘� 1)/2, where ‘ is the number of ancestors just before
the event. Here we recall how the conditioning on B ¼ b
and the existence of a unique event polymorphism E\ M
further modify the shape of the genealogy by lengthen-
ing the intercoalescence times.
The next result can be deduced from Griffiths and

Tavaré (1998) or Stephens (2000). Assume that the mu-
tation D has B ¼ b descendants. The joint probability dis-
tribution of ðX2; . . . ; XnÞ conditional on the event E \ M
has density

Figure 1.—Conditional coalescent tree with n ¼ 8 leaves.
The mutation D has B ¼ 4 descendants.

Figure 2.—Coalescence levels in B and C with their nota-
tions Jr and Kr. Here we have n ¼ 8; B ¼ 4; J3 ¼ 7, J2 ¼ 5,
J1 ¼ 4, J0 ¼ 2; and K3 ¼ 6, K2 ¼ 3, K1 ¼ 1.
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f ðx2; . . . ; xnÞ ¼
Xn�b11

k¼2

pD
k lkxk

Yn

‘¼2

f‘ðx‘Þ; ð4Þ

where f‘(x‘) is the probability density function of the
exponential distribution of rate l‘.

As a consequence of Equation 4 we have the following
result:

Corollary 1. Assume that the mutation D has B ¼ b
descendants. Let ‘ ¼ 2; . . . ; n. Then we have

E½X‘ jE \ M � ¼ ð11 pD
‘ Þ=l‘ if ‘# n � b 1 1

1=l‘ otherwise: ð5Þ

(

As a consequence of Equation 4, note that conditional
on the event E \ M the X‘’s are no longer independent
random variables. However, Equation 4 has the nice
interpretation that once we know that the number of
ancestors is equal to k at the time D occurs, then Xk has
gamma G(2, lk) distribution, the other X‘ have exponen-
tial G(1, l‘) distribution, and the variables are mutually
independent. This remark is useful for simulating con-
ditional trees given thatB¼ b. Our algorithm is as follows:

1. Draw JD ¼ k according to the distribution (pk
D) for

k ¼ 2; . . . ; n � b 1 1.
2. Draw J0 from the conditional distribution

Pð J0 ¼ j j JD ¼ k; E \ M Þ ¼ 2j

kðk � 1Þ; j ¼ k � 1; . . . ; 1:

3. Draw an ordered sequence k # J1 , � � � , Jb�1 ,n
uniformly from the set of ordered integral sequences
I bðk; nÞ ¼ fk # j1 , � � � , jb�1 ,ng.

4. Fill the holes left in [1, n] by the Jr’s with the Kr’s.
5. Sample Xk from the gamma G(2, lk) distribution;

otherwise, sample X‘ from the exponential distribu-
tion G(1, l‘), for ‘ 6¼ k.

Testing for the absence of D: Here we present a brief
study of the power of a rather ‘‘abstract’’ test to reject the
null hypothesis H0 of absence of the mutation D against
the alternative hypothesis H1 of its existence. The test is
abstract because it assumes the knowledge of the sample
genealogy, and the data set consists of all the intercoa-
lescence times (Xk).Under the null hypothesis we assume
that the property E holds for a specific subsample of b
sequences. In the alternative hypothesis we assume that
the mutation D has B ¼ b descendants as well. The test
statistic consists of the ratio of likelihoods that is believed
to behave optimally for reasonably large sample sizes. It
can be described as

r ¼ Lðx; H1Þ
Lðx; H0Þ

¼
Xn�b11

k¼2

lkpD
k xk :

Under H0, we see that this ratio has the same distribu-
tion as a sum of independent exponential random
variables of rates nk ¼ 1/pk

D,

Y ¼
Xn�b11

k¼2

EðnkÞ; ð6Þ

whereas under H1 it is distributed as Y plus a sum of
independent exponential random variables of rates nk

2,

Z ¼ Y 1
Xn�b11

k¼2

Eðn2kÞ: ð7Þ

The criterion for rejection is r greater than the 0.95th
percentile from neutral data sets (see Equation 6). The
power of the test was studied numerically from 10,000
replicates of Y and Z. We found that the power did not
exceed a value close to 0.2 for n ¼ 10, 20, 50, 100, and
b � n. For smaller b’s, the lack in power was even more
striking. For example, the power dropped to �0.1 for
b/n � 0.5.

Because we assume the ideal knowledge of tree to-
pologies and branch lengths, the interest in these power
calculations is more theoretical than directed toward
applications. However, these results put some limitations
on testing for the occurrence of themutationD. They are
evidence that the occurrence ofD alone conveys too little
information for being detected by any kind of statistical
testing even if the full genealogy were observed. This
could be explained that the shapes of such trees do not
undergo significant changes under the occurrence of D.

NUCLEOTIDE POLYMORPHISM

Corrected estimator: We now take account of the
mutations that are superimposed on the conditional
coalescent trees. Mutations on the tree branches are
distributed according to Poisson processes of rates u0/2
or u1/2, depending on where D takes place. Assuming
the infinitely many sites model of the DNAmolecule, we
introduce an unbiased estimator of u1 based on the
number of segregating sites S. This variable equals the
number of mutations that occurred during the sample
history back to the most recent common ancestor of the
sample. In the classical coalescent, S has Poisson
distribution of parameter Lnu/2, where u is the muta-
tion rate, and Ln is the length of the genealogy. The
nucleotide polymorphism or Watterson’s estimator is
defined as û ¼ S=Hn�1 (Watterson 1975). It is an un-
biased estimator of u with the property that

Var½û� ¼ 1

H 2
n�1

Xn�1

i¼1

u2

i2
1

u

i

� �
:

In analogy with the classical approach, we denote by
Ln

D the length of the genealogy of the full sample and
by Ln

1 the length of the subgenealogy of B. Borrowing
the notation from Wiuf and Donnelly (1999), we
also denote by hn the time separating the root of the
subgenealogy from the mutation D. In the two-rates
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model, the number of segregating sites can be split into
two independent terms

S ¼ S0 1 S1;

where S1 has Poisson distribution of rate (Ln
1 1 hn)u1/2

and S0 has Poissondistribution of rate (Ln
D� Ln

1 � hn)u0/2.
Taking expectations, we obtain the expected number
of segregating sites as

E½S � ¼ Anu0 1Bnu1;

where

Bn ¼ 1
2ðE½L

1
n �1E½hn �Þ;

and

An ¼ 1
2E½L

D
n � � Bn:

Accordingly, an unbiased estimator of u1 can be defined
as follows:

û1 ¼
S � Anu0

Bn
:

Table 1 provides numerical values for An and Bn with
sample sizes in the range 5–50. Exact formulas are
derived afterward. First, the expectation E[Ln

D] results
from Corollary 1 as follows:

1

2
E½LD

n � ¼ Hn�1 1
1

Hn�1

Xn�1

b¼1

Xn�b11

k¼2

pD
k

bðk � 1Þ:

Given that themutationD has b descendants (B¼ b), the
conditional expectations involved in the computation
of An and Bn can be obtained from the results of Wiuf

and Donnelly (1999) and Griffiths and Tavaré
(2003). On the one hand, Griffiths and Tavaré
(2003) proved that

E½L1
n jB ¼ b� ¼

Xn�b11

j¼2

pD
j

Xn

k¼j11

2

kðk � 1Þcjk ;

where

cjk ¼ b � ðb � 1Þn � k

n � j
� ðn � kÞ!ðn � j � b 1 1Þ!
ðn � jÞ!ðn � k � b 1 1Þ!

for j ¼ 2; . . . ; n � b 1 1 and k ¼ j 1 1; . . . ; n. On the
other hand, Wiuf and Donnelly (1999) showed that

E½hn jB ¼ b� ¼ 2
Xn�b11

k¼2

pD
k

k
; b ¼ 1; . . . ; n � 1:

The values of An and Bn can then be computed by
summing over all b’s.
Statistical errors and power of tests: In the first half

of this section, we evaluate the standard deviation (SD)
of the estimator û1. The exact computation of Var[û1]
appears intricate enough so that we resort to Monte
Carlomethods. In the second half, we evaluate the power
of the statistic û1 to reject the hypothesis that the muta-
tion rate increases simultaneously with the occurrence of
the mutation D. Simulations were performed using the
R statistical programming language (R Development
Core Team 2004).

Statistical errors: For evaluating statistical errors, the
following experimental design was used. The parameter
u0 was set equal to the value u0 ¼ 1. Roughly, this cor-
responded to a normal mutation rate per mitotic divi-
sion of m0 � 10�10, while the total number of cells N
in the tissue approximated 2.5 billion. We considered
three different values for the raised mutation rate u1 ¼
10, 102, 103, and the sample sizes were taken in the
range n ¼ 10–50. Simulations were performed using the
method described in the previous section. Table 2 gives
the bias and the standard deviation computed over
10,000 replicates. These results confirm that û1 was
indeed unbiased. Nevertheless, the standard devia-
tions were rather high. This could be explained as the

TABLE 1

Correction coefficients for û1

n 5 10 15 20 25 30 35 40 45 50

An 2.171 2.693 3.024 3.265 3.455 3.612 3.747 3.864 3.967 4.061
Bn 0.595 0.68 0.713 0.732 0.746 0.756 0.764 0.771 0.776 0.781

Numerical values are shown for the correcting coefficients An and Bn in the statistic û1 ¼ ðS � Anu0Þ=Bn for
n in the range 5–50.

TABLE 2

Statistical errors for û1

u1 ¼ 10 u1 ¼ 100 u1 ¼ 1000

n E SD E SD E SD

10 9.9 12.0 97.4 112.4 947.5 1109.7
20 10.3 12.5 99.7 122.4 991.9 1211.1
30 10.2 12.8 102.9 126.1 1060.3 1286.1
40 10.2 13.2 100.9 128.9 1018.2 1286.2
50 10.4 13.5 102.0 131.7 1045.7 1235.9

Bias and standard deviation are shown for the estimator û1
for sample size n ¼ 10–50. The normal rate was set to the value
u0 ¼ 1 and the raised rates varied from u1 ¼ 10 to u1 ¼ 1000.
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empirical distributions exhibited strong positive skew. In
addition, most of the error was contributed by a term
that seemed proportional to u1

2. For n ¼ 20, we adjusted a
regressionmodel of the form anu11 bnu1

2 to the variance,
and an almost perfect fit was obtained as Var ¼ 1.47u12

(R2 ¼ 0.999, P , 10�12). For n ¼ 40, we obtained Var ¼
1.68u12 (R2 ¼ 0.997, P , 10�12). Apparently, SDs did not
exhibit a fast decrease as sample sizes increased. This
might be due to a strong correlation of data within the
subsampleB and to the fact that themost recent ancestor
of this subsample is expected to be recent. Note that the
shape of the correcting constant Bn suggested a logarith-
mic rate of decrease of errors toward zero.

Power: A fundamental assumption through this work
is that the mutation D has occurred once in the history
of the sample. Assuming a normal mutation rate u0, we
report results regarding the power of the test based on
û1 to reject the null hypothesis of absence of D against
the alternative of its existence together with an increase
in mutation rate u1 . u0. Results for u0 ¼ 1 and u1 ¼ 10–
103 are given in Table 3. Power values ranged from
�0.06 to �0.90. Reasonable powers were obtained for
u1 . 103u0. No significant improvements were observed
when the sample sizes varied from n ¼ 10 to n ¼ 50.

In a second step we reverted the role of the null and
alternative hypotheses and used a test based on û. The
results are reported inTable 4. In this table, powers range
from�0.43 to�0.90. For u1 , 10, the test exhibited per-
formances similar to those presented in the previous
section where the simultaneous rise in mutation rate was
ignored. Significant gains in power were obtained for
u1 ¼ 103u0. Increasing the sample sizes did not provide
additional benefit. Table 4 indicates that the event D was
more easily detectedwhen associatedwith largemutation
rates and small sample sizes. However, the power to de-
tect D remains small for u1 , 1000u0.

NUCLEOTIDE DIVERSITY

Corrected estimator: Here we introduce an unbiased
estimator of u1 based on the nucleotide diversity P. In

the infinitely many sites model the nucleotide diversity
is defined as the mean number of pairwise differences
between nucleotides. Let P(i, j) be the number of sites
at which the sequence i differs from the sequence j, for
1 # i # n and 1 # j # n. The nucleotide diversity is the
average value of P(i, j). It can be computed as follows:

P ¼ 1

nðn � 1Þ
X
i 6¼j

Pði; jÞ:

In the unconditional coalescent, we have E[P(1, 2)] ¼
uE[X2], and P is an unbiased estimator of u. The vari-
ance ofP is equal toVar[P]¼ (n1 1)u/3(n� 1)1 2(n21

n 1 3)u2/9n(n � 1) (Tajima 1983).
Now consider the occurrence of D and the two rates

of mutation u0 and u1. Again, we assume that the muta-
tion D has B ¼ b descendants. Consider two arbitrary
sequences labeled 1 and 2. In the classical coalescent,
E[X2] is the expected coalescence time of sequences 1
and 2. In analogy with this, the computation of E[P(1,
2)] requires distinguishing three cases. In the first case,
both sequences 1 and 2 belong to B, and we have

E½Pð1; 2Þ� ¼ tBu1;

where tB is the expected coalescence time withinB. This
case occurs with probability (b/n)2. In the second case,
one sequence is in B while the other belongs to C. This
event occurs with probability 2b(n � b)/n2, and we have

E½Pð1; 2Þ� ¼ ð2tB;C � tDÞu0 1 tDu1;

where tB;C is the expected coalescence time of sequence
1 and sequence 2, and tD is the age of D given in Equa-
tion 3. The third case occurs with probability (1� b/n)2.
It corresponds to the situation where both sequence
1 and sequence 2 are in C. Then we have

E½Pð1; 2Þ� ¼ tCu0;

where tC is the corresponding expected coalescence
time. Taking expectation with respect to B, we deduce
that

TABLE 3

Powers for û1

n u1 ¼ 10 u1 ¼ 100 u1 ¼ 1000

10 0.10 0.29 0.90
20 0.06 0.18 0.70
30 0.13 0.29 0.65
40 0.11 0.24 0.59
50 0.09 0.21 0.55

Power of the test based on the statistic û1 is shown, where
the null hypothesis H0 is the existence of D and u1 . u0,
whereas the alternative hypothesis H1 is the absence of D.
The normal rate was set to the value u0 ¼ 1 and the raised
rates varied from u1 ¼ 10 to u1 ¼ 1000.

TABLE 4

Powers for û

n u1 ¼ 10 u1 ¼ 100 u1 ¼ 1000

10 0.44 0.75 0.93
20 0.44 0.74 0.90
30 0.48 0.75 0.89
40 0.42 0.73 0.88
50 0.43 0.72 0.87

Power of the test based on the statistic û is shown, where the
null hypothesis H0 is the absence of D whereas the alternative
hypothesis H1 is the existence of D associated with u1 . u0.
The normal rate was set to the value u0 ¼ 1 and the raised
rates varied from u1 ¼ 10 to u1 ¼ 1000.
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E½Pð1; 2Þ� ¼ Cnu0 1Dnu1;

where the constants Cn and Dn can be computed from
the above defined coalescence times. Therefore, an un-
biased estimator P1 of u1 is of the form

P1 ¼
P� Cnu0

Dn
:

Table 5 gives numerical values for Cn and Dn for n in
the range 10–50. The next section explains the way the
exact computations of all coalescence times can be
achieved.

Coalescence times: Here we provide explicit ways of
computing the coalescence times tB; tB;C, and tC. As a
consequence, we are able to give formal expressions for
the correcting constants Cn and Dn. Because the formal
expressions are somewhat ugly, the following results
should be considered more as recipes for computing
expressions than as immediate closed mathematical
formulas. The strategy for establishing these exact
formulas is rather simple and replicable with slight
variations in the three cases.

Case 1—coalescence within B: Let Tj11 ¼ Xn 1 � � � 1
Xj11 denote the time at which the sample first has j an-
cestors. A basic argument shows that if a node has J
ancestors, then its expected age is E[TJ11]. Therefore,
the coalescence time of two individuals in a subsample
of size b for which the total number of ancestors at each
node are J1 , � � � , Jb�1 is given by

tB ¼ b 1 1

b � 1

Xb�1

r¼1

2

ðr 1 1Þðr 1 2ÞE½TJr11�;

which is made explicit in the appendix.
Case 2—coalescence between B and C: The expression of

tB;C has a simple interpretation in terms of the age of D.
The expression given in the appendix can be reduced,
using a symbolic computing language such as Maple.
Because the gamma distribution G(2, lk) is the sum of
two independent exponentials, we find that the co-
alescence time tB;C ¼ tD (age of D) plus the coalescence
time of two ancestors among the k present at the
occurrence of D. According to Equation 4, the second
coalescence time has exponential G(1, 1) distribution.
Hence, we have

tB;C ¼ 11 tD:

Case 3—coalescence within C: The average coalescence
time for two individuals within C can be obtained from
conditioning on J0 ¼ j and from the observation that we
have Kr ¼ r for r , j given that J0 ¼ j. This leads to a
complicated formula that uses a series of probabilistic
results stated in Lemmas 3 and 4 (see the appendix).
Statistical errors and power of tests: Here we report

numerical estimates of the standard deviations of P1,
and we study the power of this statistic to reject the
hypothesis that the mutation rate increased simulta-
neously with the occurrence of the mutation D. The
same experimental design was used as for the statistic û1
defined in the previous section. The results are closely
parallel to those obtained for û1 (see Tables 6–8 ). The
estimator appears to be unbiased. The standard devia-
tions are of the same order as those computed for û1
although they seem slightly higher. Using P1 instead of
û1 to reject the existence ofD leads to a 12 or 13% loss in
power when u1 ¼ 100 or u1 ¼ 103. Reverting the two
hypotheses and using P yield the same conclusions as
for û.

DISCUSSION

Genetic informationmust be tightly regulated, and its
faithful replication and repair is the greatest imperative.
To this end humans have invested .130 genes in DNA
repair, and this number is even greater if genes dedi-
cated to fidelity of replication are included (Anderson
2001; Wood 2001). In this article we introduced a

TABLE 5

Correction coefficients for P1

n 5 10 15 20 25 30 35 40 45 50

Cn 0.996 1.019 1.021 1.02 1.02 1.019 1.019 1.018 1.018 1.018
Dn 0.253 0.218 0.199 0.187 0.178 0.171 0.166 0.161 0.156 0.154

Numerical values are shown for the correcting coefficients Cn and Dn in the statistic P1 ¼ (P � Cnu0)/Dn for
n in the range 5–50.

TABLE 6

Statistical errors for P1

u1 ¼ 10 u1 ¼ 100 u1 ¼ 1000

n E SD E SD E SD

10 9.9 13.7 107.342 133.9 1006.2 1243.5
20 10.2 14.7 100.91 136.2 1030.5 1458.9
30 9.5 15.5 100.875 147.9 1040.0 1589.5
40 10.7 17.8 95.763 159.0 998.4 1538.1
50 10.3 17.6 106.478 164.6 1039.7 1598.1

Bias and standard deviation are shown for the estimator
P1 for sample size n ¼ 10–50. The normal rate was set to the
value u0 ¼ 1 and the raised rates varied from u1 ¼ 10 to u1 ¼
1000.

Conditional Genealogies and Genomic Instability 1815



stochasticmodel ofmutation in tumor cells with the aim
of estimating the amount of genomic instability in
cancer tissues due to the alteration of DNA repair genes.
Our approach took into account the difficulties gener-
ated by sampling within tumoral clones and the fact that
these clones must be difficult to isolate (Anderson et al.
2001). We provided unbiased estimators of the normal-
ized raised mutation rates. These quantities can be
interpreted as the mean numbers of new mutations
present in daughter cells after each mitotic generation
(this corresponds to an evaluation of u1/2¼ 2m1N). The
power of these statistics to reject genomic instability
was assessed and proved to increase with the intensity
of mutation. However, we showed that large statistical
errors may be associated with such estimates. Condi-
tional on the presence of loss ofMMRwithin a sample of
cells, no significant benefit would be expected from
large sample sizes. In addition, we proved that geno-
mic instability can hardly be detected unless the raised
mutation rates exceed the normal rates by a factor.103.
These results suggest monitoring several loci to increase
power and reliability of tests and give theoretical
support to foundations of current clinical guidelines
(Boland et al. 1998).

Computations were conducted under the assump-
tions of selective neutrality. Tumors of clonal origin have

long life spans with evolutionary history that may last
over 10 or 20 years and exhibits multistep progression.
At least in the early stages of tumor progression selective
neutrality is still compatible with Loeb’s theory of
carcinogenesis. Evidence is lacking that the initiating
events are neither highly advantageous nor highly
deleterious. A competing assumption explains that a
cell must exhibit a selective advantage to be converted
into a pretumoral cell. Then by a selective clonal
expansion the cell becomes malignant (Cairns 1975;
Nowell 1976; Tomlinson et al. 1996). The material
presented in this article may serve as a basis for testing
such kinds of assumption. A classical way of doing so
is by computing Tajima’s D-statistic (Tajima 1989). In
our framework this statistic can be defined as the differ-
ence û1 �P1. To apply the test, P-values can be obtained
from Monte Carlo replicates, using the new simulation
procedure described in conditional coalescent trees.

Genomic instability particularly affects DNA repeat
sequences. It has even been calculated to affect hundred
of thousands of such sequences in each tumor cell but
very few of these events are within coding sequences
(Perucho 1996). It is widely argued that stepwise
mutation models might be more appropriate for such
DNA sequences than the infinitely many sites model
used in this work. However, genomic instability is not
restricted to repeat sequences and even not limited to
the nucleus. Mitochondrial DNAmay also bemutated in
a process that involves clonal expansion (Polyak et al.
1998). Infinitely many sites models may thus be accept-
able in several situations.

Anderson et al. (2001) reported several difficulties
with measuring the amount of instability in cancer cell
genomes. The ideal measurement would be how many
genomic events occur per cell generation because this
number would allow evaluation of the rate of tumor
progression. Regardless of the fact that it is as yet
difficult to approach in clinical application, a rigorous
way of calculating unbiased estimates of the amount of
genomic instability in pretumoral tissues would never-
theless require the correction coefficients described in
this article.

The authors thank Robert C. Griffiths for useful discussions about
the model and an anonymous referee for correcting some biblio-
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Tavaré, S., 2004 Ancestral inference in population genetics, pp. 1–
188 in Lectures on Probability Theory and Statistics. Ecole d’Eté de Prob-
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APPENDIX

Proof of Corollary 1. Let n $ 2. Assuming that D has b descendants (1# b # n � 1) and using Equation 4 we obtain the
marginal distribution of each intercoalescence time. For ‘ ¼ 2; . . . ; n we have

f ðx‘Þ ¼
Xn�b11

k¼2;k 6¼‘

pD
k 1 pD

‘ l‘x‘

 !
f‘ðx‘Þ

if ‘ # n � b 1 1; otherwise, it is

f ðx‘Þ ¼ f‘ðx‘Þ;
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where f‘ is the density of the exponential G(1, l‘) distribution. Taking expectations it becomes

E½X‘ jE \ M � ¼ ð11 pD
‘ Þ=l‘ if ‘#n � b11

1=l‘ otherwise:

�

Lemma 1. Let n $ 2. We have

1

2
E½LD

n � ¼ Hn�1 1
1

Hn�1

Xn�1

b¼1

Xn�b11

k¼2

pD
k

bðk � 1Þ:

Proof. Let b ¼ 1; . . . ; n � 1. From Corollary 1 we have

E½LD
n jB ¼ b� ¼

Xn

k¼2

kE½Xk � ¼ 2Hn�1 1 2
Xn�b11

k¼2

pD
k

k � 1
:

Then

E½LD
n � ¼

Xn�1

b¼1

1

bHn�1
E½LD

n jB ¼ b� ¼ 2 Hn�1 1
1

Hn�1

Xn�1

b¼1

Xn�b11

k¼2

pD
k

bðk � 1Þ

 !
:

Lemma 2. Let n$ 2 and assume thatD has b descendants. Let r ¼ 1; . . . ; b � 1 and k2 [2, n� b1 1]. For j2 [k1 r� 1, n�
b 1 r], we have

Pð Jr ¼ j j JD ¼ k; E \ M Þ ¼

j � k
r � 1

� �
n � j � 1
b � r � 1

� �
n � k
b � 1

� � :

Proof.Let k2 [2, n� b1 1] and r2 [1, b� 1]. For all j2 [k1 r� 1, n� b1 r] it is known that for k # j1 , � � � , jr�1 , j
we have

Pð J1 ¼ j1; . . . ; Jr�1 ¼ jr�1; Jr ¼ j j JD ¼ k; E \ M Þ ¼ n � j � 1
b � r � 1

� �
n � k
b � 1

� ��1

(Tavaré 2004). Note that the above formula is independent of j1; . . . ; jr�1. We have

Pð Jr ¼ j j JD ¼ k; E \ M Þ ¼
X

k#j1,���,jr�1,j

Pð J1 ¼ j1; . . . ; Jr�1 ¼ jr�1; Jr ¼ j j JD ¼ k; E \ M Þ

¼
j � k

r � 1

� �
n � j � 1

b � r � 1

� �
n � k

b � 1

� ��1

:

Lemma 3. Let n $ 2 and assume that D has b descendants. Let J0 be defined as in conditional coalescent trees. For j ¼
1, . . . , n � b, we have

Pð J0 ¼ j jE \ M Þ ¼ 2j
Xn�b11

k¼j11

pD
k

kðk � 1Þ:

Proof. Due to a straightforward combinatorial argument, for j ¼ 1, . . . , n � b we have

n

n

n
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Pð J0 ¼ j j JD ¼ k; E \ M Þ ¼ 2j

kðk � 1Þ:

Then intregrating over JD’s implies that

Pð J0 ¼ j jE \ M Þ ¼ 2j
Xn�b11

k¼j11

pD
k

kðk � 1Þ; k ¼ j 1 1; . . . ; n � b11:

Lemma 4. Let n $ 2, assume that D has b descendants, and denote c ¼ n � b. Let r ¼ j ; . . . ; c � 1 and Kr be defined as in
conditional coalescent trees. For k 2 [r 1 1, r 1 b], we have

PðKr ¼ k j J0 ¼ j ; E \ M Þ ¼

k � j � 1
r � j

� �
n � k � 1
c � r � 1

� �
n � j � 1

b

� � :

Proof.Note that the vector ð J0; . . . ; Jb�1; K0; . . . ; Kc�1Þ is obtained from a permutation of the labels ð1; 2; . . . ; n � 1Þ,
where Jr’s and Kr’s are defined as in conditional coalescent trees. Conditional on J0 ¼ j, the vector
ð J1; . . . ; Jb�1; Kj ; . . . ; Kc�1Þ is also a permutation of the labels ð j 1 1; . . . ; n � 1Þ. Then Equation 1 implies that for
j , kj , � � � , kc�1 ,n, we have

PðKr ¼ kr ; r ¼ 1; . . . ; c � 1 j J0 ¼ j ; E \ M Þ ¼ n � j � 1
b

� ��1

:

Note that the above formula is independent of k1; . . . ; kc�1. We have

PðKr ¼ k j J0 ¼ j ; E \ M Þ ¼
X

j,kj,���,kr�1,r

X
r,kr11,���,kc�1,n

PðKr ¼ kr ; r ¼ 1; . . . ; c � 1 j J0 ¼ j ; E \ M Þ

¼

k � j � 1

r � j

� �
n � k � 1

c � r � 1

� �
n � j � 1

b

� � :

An explicit formula for tB defined in nucleotide diversity is given by

tB ¼ b11

b � 1

Xb�1

r¼1

2

ðr 1 1Þðr 1 2Þ
Xn�b11

k¼2

Xc1r

j¼k1r�1

Pð Jr ¼ j j JD ¼ kÞE½Tj11 j JD ¼ k�pD
k :

In this expression, we used Corollary 1,

E½Tj11 j JD ¼ k� ¼ 2ðn � jÞ
jn

; for j $ k;

and the result stated in Lemma 2 (appendix).
The average coalescence time for two sequences, one within B and one within C, is straightforward from the

conditioning on JD. We obtain that

tB;C ¼ 2
Xn�b11

k¼2

ðk 1 1Þ
ðk � 1Þfðn; kÞpD

k ;

where

fðn; kÞ ¼
Xk

j¼2

E½Tj j JD ¼ k�=jð j 1 1Þ; k ¼ 2; . . . ; n � b11:

n

n
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Because j # k in the above summation, we obtain from Corollary 1 that

E½Tj j JD ¼ k� ¼ 2ðn � j11Þ
ð j � 1Þn 1

2

kðk � 1Þ:

Regarding tC, we have

tC ¼ 2
ðc 1 1Þ
ðc � 1Þ

Xc�1

r¼1

E½TKr11�
ðr 1 1Þðr 1 2Þ; r ¼ 1; . . . ; c � 1:

Now we use the fact

E½TKr11� ¼
Xc

j¼1

E½TKr11 j J0 ¼ j �Pð J0 ¼ jÞ:

For j ¼ 1; . . . ; c and r , j, we have

E½TKr11 j J0 ¼ j � ¼ 2ðn � r Þ
rn

1 ej ;

with

ej ¼
Xn�b11

‘¼j11

2

‘ð‘� 1ÞPð JD ¼ ‘ j J0 ¼ jÞ:

Otherwise, we have r $ j and

E½TKr11 j J0 ¼ j � ¼
Xb1r

k¼r11

PðKr ¼ k j J0 ¼ jÞ 2ðn � kÞ
nk

1 ejk

� �
;

where

ejk ¼
Xk

‘¼j11

2

‘ð‘� 1ÞPð JD ¼ ‘ j J0 ¼ jÞ; k ¼ r 1 1; . . . ; b 1 r :

For all ‘ ¼ j 1 1; . . . ; n � b11, the conditional probabilities P( JD ¼ ‘ j J0 ¼ j) can be obtained from Bayes’ formula.
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